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We present an exact calculation of the probability density for the work done by an external agent on a
two-level system. Due to the external drive, both the transition rates between the two states and their energies
depend on time. Within this setting we calculate the probability of every possible sample path of the system
evolution and also the work done along any such path. The general procedure yields an evolution equation for
the characteristic function of the work. Assuming that the energies change with constant rates, the properties of
the work distribution are controlled by a single parameter representing the ratio of the time scales of the driving
protocol, and of the internal dynamics, respectively. We calculate the mean work and characterize those sample
paths which are not in agreement with the second law. In the slow driving limit, the probability density for the
work collapses to a delta function localized at the reversible work. In the strongly nonequilibrium regime, the
most probable work is smaller and the mean work is bigger than the reversible work.
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I. INTRODUCTION

The work needed to change the state of a small system,
such as a single RNA molecule, fluctuates. By repeating
many times measurement of the work accomplished during,
e.g., the forced unfolding of an RNA molecule �1,2�, one
arrives at a definite histogram, or distribution. The distribu-
tion depends on how the system is driven, but it contains
important information concerning the system itself. In order
to understand this information, the exact theoretical calcula-
tion of the work distribution would be of considerable
importance �3�.

From a formal point of view, there are two difficulties in
carrying out such an exact analysis. The first is that the evo-
lution equations have to reflect the prescribed driving proto-
col. Differently speaking, one has to cope with, e.g., the dif-
fusion equation with a time-dependent potential �4–6�, or the
rate equation with time-dependent rates �7,8�. Time-
dependent potentials play a central role in the phenomenon
of stochastic resonance �9�, and in the physics of Brownian
motors �10�. Due to an active research within these two do-
mains, both the exact solutions of the underlying dynamical
equations and the emerging effects are fairly well under-
stood. But even the exact knowledge of the one-time charac-
teristics of the dynamics is insufficient to analyze the work
distribution. Actually, the second difficulty arises from the
observation that the work is a functional of the underlying
evolution process. The work done on the system during a
time interval, say �t0 , t�, depends on the whole history of the
system evolution within this interval.

The present paper concentrates on the two problems
above in the simplest possible model, when the system being

driven is a two-state system. The external agent does the
work on the system by changing the energies of the two
states. The driving protocol is specified by prescribing the
detailed time dependence of the energy levels. Given the
driving protocol, our primary objective is the explicit for-
mula for the probability density ��w , t� defined as

��w,t�dw = Prob�W�t� � �w,w + dw�� . �1�

Here W�t� is the fluctuating work done on the system during
the time interval �t0 , t� �its precise definition will be given at
the beginning of Sec. III�. Notice that the knowledge of the
probability density provides complete information about the
random variable W�t�. In particular, the mean work �W�t��
can be calculated by a single integration. A similar single
integration yields also the mean value �exp�−�W�t���, where
�=1/ �kBT�. In 1997 Jarzynski discovered an identity �11,12�
which relates the last average and the Helmholtz free energy
of the system. More precisely, the Jarzynski identity enables
one to specify the free energy difference between two equi-
librium states by fixing the driving protocol, repeating a real
time �i.e., nonequilibrium� experiment, and measuring the
work done during each repetition. The identity has been re-
cently experimentally tested �2�.

But besides providing various mean values, the density
�1� answers also the following question. What is the common
weight of those experiments, during which the measured
work does not exceed the reversible work? Finally, from a
somewhat different viewpoint, the exact density for the work
represents a missing benchmark for the simulation ap-
proaches �13,14�, and approximative treatments �15�.

II. INTERNAL DYNAMICS WITH TIME-DEPENDENT
RATES

A conventional two-state Markov chain �16� is defined as
a special sequence of the random variables �D�n��n=0
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of them can only assume two fixed values, say d1=1 and
d2=−1. A Markov chain is fully described by the following
two ingredients. First, one has to define the “initial condi-
tion,” i.e., the probabilities pj�0�=Prob�D�0�=dj�, j=1,2. It
will be convenient to arrange this distribution in a two-
dimensional column vector 	p�0��. Here and below, we use
the bracket notation to make the algebraic operations more
transparent. For example, we write pj�0�= �j 	 p�0��. Sec-
ondly, we have to prescribe the one-step transition probabili-
ties, i.e., the conditional probabilities that the random vari-
able D�n� assumes the value di provided that the “previous”
random variable D�n−1� has assumed the value dj,

kij�n� = Prob�D�n� = di	D�n − 1� = dj� , �2�

i, j = 1,2, n = 1,2, . . . .

We again arrange them into the square matrix K�n�, i.e.,
kij�n�= �i 	K�n� 	 j�. Our designation emphasizes a point
which will be very important in the following. Namely, the
transition probabilities will generally vary with the discrete-
time variable n. The specific form of this dependence will
reflect the externally controlled time-dependent conditions,
i.e., the “driving protocol” of the process. Otherwise, as
usual, the matrix elements in a column of a given matrix
K�n� are nonnegative real numbers and they add to unity.
Therefore the most general form of the matrix K�n� will be
specified by the two numbers a�n�=k21�n�, b�n�=k12�n� from
the interval �0,1�. Due to the Markov property of the chain,
the distribution of the nth variable D�n� can be calculated by
the simple matrix multiplication

Prob�D�n� = di	D�0� = dj� = �i	K�n�K�n − 1� ¯ K�2�K�1�	j� .

�3�

A continuous-time Markov process emerges if we generate
the Markov-chain transitions at the so-called Poisson points
�17,18�. We shall call them attempt times. More precisely, the
possibility of a jump between two Markov-chain states arises
just at the random times 0� t1� t2�¯, where the intervals
between the neighboring attempt times �tn− tn−1�, n=1,2 , . . .,
are independent and identically distributed random variables,
their generic probability density being ��t�=� exp�−�t�.
Here the parameter 1 /� measures the mean time between
two neighboring attempt times. Assume the first attempt time
occurs at the time s. At this instant, the transitions are con-
trolled by the transition probabilities �2�, which, however,
now will be designated kij�s�. Differently speaking, if a Pois-
son point occurs at a time s, the transitions are controlled by
the matrix

K�s� = I − 
 a�s� − b�s�
− a�s� b�s�

� . �4�

Here I is the unity matrix. The functions a�s�=k21�s� and
b�s�=k12�t� together with the attempt frequency � provide
the complete specification of the arising time-continuous
Markov process; we designate it simply as D�t�. If the func-
tions a�t�, b�t� are time independent, we end up with the
standard �asymmetric� dichotomous process �19�. On the

other hand, their time variation introduces a subtle interplay
between a typical interattempt time, as measured by the
mean frequency �, and the time scale �scales� which controls
�control� the external driving.

The above construction allows for a transparent descrip-
tion of all possible sample paths �trajectories� of the process
D�t�. We designate by

P�t,n; jn, jn−1, . . . , j0;tn,tn−1, . . . ,t1��
k=1

n

dtk, �5�

the probability of a fixed n-attempt sample path defined in
the interval �0; t� which runs as follows. It starts at time
t0=0 in the state dj0

. The first attempt time occurs in the time
interval �t1 , t1+dt1�. At this time, there occurs the transition
to the state dj1

�if j1= j0, there is no jump and the sample path
remains in the state dj0

�. A similar description holds for the
attempts which are generated in the infinitesimal vicinity of
the times t2 , . . . , tn. Finally, after the time tn, the sample path
resides in the state djn

up to the time t. The probability for the
specific sample path just described reads

P�t,n; jn, . . . , j0;tn, . . . ,t1��
k=1

n

dtk

= f�t − tn��
k=1

n

�kjkjk−1
�tk���tk − tk−1�dtk�pj0

�0� . �6�

The function f�t− tn�=1−0
t−tn��t��dt� accounts for the prob-

ability of there being no further attempt after the last attempt
time tn and before the final time t. In the case of n=0 the
products are empty and P�t ,0 ; j0�= f�t�pj0

�0�. The last factor
pj0

�0� takes into account the probability of the initial state
dj0

.
The probabilities �6� of the sample paths add up to one

provided we carry out the three following steps. First, we fix
the number of the attempt points n and we sum over all
possible successions of �n+1� states d0 , . . . ,dn. Second, we
integrate over any possible position of the n attempt times.
Finally, we sum over any possible number of attempt times.
We now show how these three operations yield also the dy-
namical law for the occupation probabilities. We start by
introducing the evolution operator R�t� with the matrix
elements

�i	R�t�	j� = Prob�D�t� = di	D�0� = dj� . �7�

Let us now fix the final state di and the initial state dj: In
order to calculate the matrix element �7�, we must sum the
probabilities of all paths which connect the state dj at the
time t0=0 with the state di at the time t. Hence we need to
evaluate the expression
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�i	R�t�	j� = �
n=0

� �
0

t

dtn ¯ �
0

t2

dt1 �
jn−1=1

2

� ¯ �
j1=1

2

P�t,n;i, jn−1, . . . , j1, j ;tn, . . . ,t1� , �8�

with pj�0�=1. We insert here the explicit form of the sample-
paths probabilities �6�. The summation over the intermediate
states dj1

, . . . ,djn−1
can be included in the multiplication of

the matrices �4�. Of course, this reasoning is valid for any
fixed pair of the initial and final states. Hence we focus di-
rectly on the whole evolution operator R�t�. Invoking the
matrix multiplication mentioned, we get the expression

R�t� = f�t�I + �
n=1

� �
0

t

dtn ¯ �
0

t2

dt1f�t − tn�K�tn�

���tn − tn−1�K�tn−1� ¯ ��t2 − t1�K�t1���t1� , �9�

where again t0=0. Before we proceed, one important remark
is in order. Up to this point, our reasoning was valid for an
arbitrary density ��t� which describes the random interval
between the two neighboring attempt times. The underlying
random-point process could have been a general renewal
process �16,17�. However, the resulting noise D�t� will be
Markovian if and only if the density ��t� is exponential �17�.
If not stated otherwise, we shall always keep this choice, and
hence we always take ��t�=� exp�−�t�, and therefore f�t�
=exp�−�t�.

We introduce these specific functions into Eq. �9� and we
carry out the time derivative. Note that the final time t is in
the upper limit of the outermost integrals, but via f�t− tn� it is
also present in the expressions being integrated. Collecting
the arising terms, we obtain the dynamical equation

d

dt
R�t� = − 
 	�t� − ��t�

− 	�t� ��t�
�R�t� , �10�

with the transition rates 	�t�=�a�t�, ��t�=�b�t�, and with the
initial condition R�0�=I. Differently speaking, the two func-
tions a�t� ,b�t�, which have entered our construction as the
transition probabilities for the Markov chain, cf. Eq. �4�,
now control the time-dependent transition rates for the re-
sulting time-inhomogeneous Markov process. The solution
of the master equation above reads �8�

R�t� = I −
1

2

 1 − 1

− 1 1
��1 − exp�− �

0

t

dt�
+�t����
+

1

2

− 1 − 1

1 1
��

0

t

dt� exp�− �
t�

t

dt�
+�t���
−�t�� ,

�11�

where 
±�t�=	�t�±��t�. The fulfillment of the initial condi-
tion R�0�=I dictated by Eq. �9�, is obvious. The validity of
the Chapmann-Kolmogorov equation can be checked by di-
rect matrix multiplication.

Turning around the reasoning used in the present section,
any Markov process with time-dependent rates can be de-
composed into a Markov chain, which controls the transi-
tions between the Markov-chain states, and Poisson process,
which controls the localization of the instants at which the
transitions can occur. It is just this reversed view which en-
ables us to calculate certain functionals of the process D�t�.

III. EVOLUTION EQUATION CONTROLLING THE
CHARACTERISTIC FUNCTION FOR THE WORK

We have described all possible paths of the system evo-
lution. For an arbitrary but fixed sample path, Eq. �6� gives
the probability of its realization. We now concentrate on the
work done by the external agent along one path. The work is
done by changing the energies of the system states while the
occupation probabilities of the states remain fixed. Let as
designate by Ei�t�, i=1,2 the time-dependent energies of the
two-level system. Assume these two functions are known. If
the system resides during the time interval �t� , t�, t� t�, in the
ith state, the work done by the external agent during this time
interval is simply Ei�t�−Ei�t��. Expanding this reasoning, the
work done on the system along the path described in the
paragraph before Eq. �6� reads

W�t,n; jn, . . . , j0;tn, . . . ,t1� = �Ejn
�t� − Ejn

�tn��

+ �
k=1

n

�Ejk−1
�tk� − Ejk−1

�tk−1�� .

�12�

We are now in possession of the two ingredients needed
to perform the averaging over the sample paths. Symboli-
cally, during any such averaging procedure, we follow the
standard prescription as follows:

���path�� = �
all sample paths

�probability for a fixed sample path�

� �value of the function �, which is being averaged, for this sample path� . �13�

In the following, the function to be averaged is the exponential exp�−uW�t��, where u is an arbitrary complex number, and
W�t� denotes the random work done by the external agent. With this choice, the summation over all possible sequences of the
Markov-chain states can still be represented as a matrix multiplication. But more important, the inverse Laplace transform �20�
of the path-averaged exponential function exp�−uW�t�� leads directly to the probability density for the random variable W�t�.

Guided by these remarks, we focus on the average
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�exp�− uW�t��� = �
n=0

� �
0

t

dtn ¯ �
0

t2

dt1 �
jn=1

2

¯ �
j0=1

2

P�t,n; jn, . . . , j0;tn, . . . ,t1� � exp�− uW�t,n; jn, . . . , j0;tn, . . . ,t1�� , �14�

and we insert the explicit expressions �6� for the sample-path
probabilities, and Eq. �12� for the work related with the
paths. Moreover, we can treat separately the four subgroups
of all sample paths which arise by fixing the initial and the
final state of the underlying Markov chain. An appropriate
ordering of the terms in Eq. �14� brings us to the following
observations. First of all, the conditional average within the
subgroup �i , j� of those sample paths which start in the state
dj at the time t0=0 and are found in the state di at the final
time t can be written as the matrix element

�exp�− uW�t����i,j� = �i	G�u,t�	j� . �15�

Secondly, the matrix G�u , t� assumes the form of an infinite
series G�u , t�=�n=0

� Gn�u , t�, where the individual terms in the
sum represent the conditional average, the condition being
the fixed number of the attempt times n. The terms are

G0�u,t� = E�u,t��f�t��E−1�u,0� ,

G1�u,t� = E�u,t���
0

t

dt1f�t − t1�L�u,t1���t1��E−1�u,0� ,

G2�u,t� = E�u,t���
0

t

dt2�
0

t2

dt1f�t − t2�L�u,t2�

���t2 − t1�L�u,t1���t1��E−1�u,0� ,

. . . . �16�

Here we have introduced the matrixes

E�u,t� = 
exp�− uE1�t�� 0

0 exp�− uE2�t��
� , �17�

L�u,t� = E−1�u,t�K�t�E�u,t� .

A direct calculation of the matrix G�u , t� would be extremely
cumbersome. However, we can try to derive and solve the
equation of motion for this matrix. We perform the time
derivative of the individual matrixes Gn�u , t� and collect the
arising terms. Assuming again ��t�=� exp�−�t�,
f�t�=exp�−�t�, the resulting dynamical equation reads

d

dt
G�u,t� = − �u��

dE1�t�
dt

� 0

0 �dE2�t�
dt

� �
+ �
 a�t� − b�t�

− a�t� b�t�
��G�u,t� , �18�

G�u,0� = I .

If 	p�0�� is an arbitrary initial condition for the process D�t�,
then the probability density ��w , t� for the random variable
W�t� will be given by the inverse Laplace transformation
�with respect to the variable u� of the function
��u , t�= �+	G�u , t�	p�0��. Here the left multiplication by the
row vector �+	= �1	+ �2	 mediates the summation over both
final states of the paths.

Let us briefly comment on the convergence properties of
the above expansion G�u , t�=�n=0

� Gn�u , t�. Formally, the so-
lution of Eq. �18� can be written as a time-ordered exponen-
tial. As a matter of fact, the above steps are nothing but a
probabilistic construction of a special Dyson expansion of
this time-ordered exponential. Using an operator norm, e.g.,
the norm �A�=�i=1

2 � j=1
2 	aij	, the operator in the curly brack-

ets on the right-hand side of Eq. �18� is bounded for any
finite t and any finite 	u	. This guarantees the convergence of
the series �n=0

� Gn�u , t� in the norm. Therefore its sum G�u , t�
exists and it can be derived term by term.

The system of equations �18� has been already noted in
the literature �14,21,22�. In these papers, the authors first
characterize the possible changes of the joint probability
densities gij�w , t�= �i	G�w , t�	j� for the infinitesimal incre-
ments of the variables w and t. The derivation is then
straightforward and concise. On the other hand, as noted
above, our procedure rests on the explicit construction of all
possible sample paths of the system evolution and on the
evaluation of the work done along any such path. As such it
indicates, at least in principle, which families of the trajec-
tories are decisive in yielding, e.g., the tails of the resulting
probability density ��w , t�.

The explicit solution of Eq. �18� will be given in the next
section. Before, several immediate consequences will be de-
rived. First of all, we note that putting u=0 in Eq. �18� gives
G�0, t�=R�t�, where the matrix R�t� controls the occupation
probabilities for the levels, cf. its explicit form �11�. This
observation follows also from a comparison of Eqs. �8� and
�14�. Since the occupation probabilities sum to one, we have
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��u=0, t�=1. Therefore the density ��w , t� is properly nor-
malized. A similar reasoning holds for the direct calculation
of the mean work. If we are able to solve Eq. �18� up to the
first order in the variable u, we can use the identity

wmean�t� = �W�t�� = − � �

�u
�exp�− uW�t����

u=0

= − � �

�u
�+ 	G�u,t�	p�0��	u=0, �19�

and similarly for the higher-order moments of the random
variable W�t�.

Let us now check the solution in simple limiting cases.
First, assume the energies Ei�t�, i=1,2, are time independent.
Then Eq. �18� again reduces to Eq. �10� and consequently
��u , t�=1 for any u and t. The inverse Laplace transforma-
tion with respect to the variable u gives ��w , t�=�w�. For
any time t, the work is zero with the probability one. Sec-
ondly, consider the limit �→0. If there are no attempt points
at all, the work depends only on the initial conditions and on
the driving schedule. It is �E1�t�−E1�0�� with the probability
p1�0�, and �E2�t�−E2�0�� with the probability p2�0�. This
conclusion follows directly from Eq. �18� if we insert �=0.

A less elementary consequence of Eq. �18� is the follow-
ing one. The exact function ��w , t� will always include a
singular part, describing the conditional work originating
from the sample paths of the process D�t� without any jumps.
These trajectories yield again the work �E1�t�−E1�0�� or
�E2�t�−E2�0��, but their common weight decreases with the
time. The specific form of the decrease is dictated by the
driving schedule. It is obtained if we consider only the diag-
onal part of the matrix in the curly brackets on the right-hand
side of Eq. �18�. We solve the system modified in this way
and perform the inverse Laplace transformation. The singular
part of the density assumes the form

�s�w,t� = p1�0�exp�− ��
0

t

dt�a�t���„w − �E1�t� − E1�0��…

+ p2�0�exp�− ��
0

t

dt�b�t���„w − �E2�t� − E2�0��… .

�20�

Since the functions a�t� ,b�t� are non-negative, the weights of
the delta functions always decrease with time. In the long-
time limit they either vanish or remain finite, depending on
whether the integrals in the respective exponents diverge or
converge to positive nonzero constants. In the latter case the
transitions between the two levels are effectively eliminated
by a rapid damping of the functions a�t� and/or b�t�. Differ-
ently speaking, in the long-time regime, the model behaves
as if the jumping frequency � were zero. But before this
regime is settled, some trajectories succeeded to realize one
or more jumps. These trajectories contribute to the nonsin-
gular part of the density ��w , t�. Hence they weaken the
weights of the delta functions in the singular part �20�.

Before closing the section we wish to add some com-
ments concerning the Jarzynski equality �2,11,12�. It is usu-
ally stated in the form �exp�−�W�t���=exp�−��Ff −Fi��,
where Ff�Fi� is the Helmholtz free energy which corresponds
to the final �initial� equilibrium state. The fixed energies
which define the properties of the initial and final equilib-
rium states are equal to the driven energies Ei�t�, i=1,2, at
the initial time t0=0 �for the initial equilibrium state�, and at
the final time t �for the final equilibrium state�. The initial
state for the nonequilibrium evolution is the equilibrium state
defined by the initial values Ei�t0�, i=1,2. Within our
scheme, after explicitly calculating the two free energies re-
quired, the Jarzynski relation assumes the form

�+ 	G��,t�	��0�� =
exp�− �E1�t�� + exp�− �E2�t��
exp�− �E1�0�� + exp�− �E2�0��

.

�21�

In this equation, 	��0�� denotes the equilibrium state corre-
sponding to the energies Ei�0�, i=1,2. It can be written in
the form 	��0��=E�� ,0�	+ � /Zi, where Zi=exp�−�E1�0��
+exp�−�E2�0�� is the partition function for the initial equi-
librium state. Therefore, we have to prove the relation
�+	G�� , t�E�� ,0�	+ �= �+	E�� , t�	+ �.

In the following proof, we assume an arbitrary, possibly
nonexponential form of the density ��t�. We first notice that
every term �16� in the n expansion of the operator G�� , t�
ends with the matrix E−1�� ,0�. Hence we should focus on
the column vector L�� , t�	+ �. A short analysis, using �+	
= �1	+ �2	 and the definitions �17�, reveals that the vector
L�� , t�	+ � reduces to ��	 if and only if the functions a�t� and
b�t� �which were up to now arbitrary� are coupled with the
driving protocol. More precisely, we arrive at the equiva-
lence of two equations

L��,t�	 + � = 	 + � ⇔ a�t�exp�− �E1�t�� = b�t�exp�− �E2�t�� .

�22�

The condition on the right-hand side of the equivalence is of
course the well known detailed-balance condition. The
equivalence is valid for any energy protocols Ei�t�, i=1,2.
Therefore, if and only if the detailed-balance condition
holds, we can write

G��,t�E��,0�	 + � = E��,t�	 + �� f�t� + �
0

t

dt1f�t − t1���t1�

+ �
0

t

dt2�
0

t2

dt1f�t − t2���t2 − t1���t1�

+ ¯ � . �23�

Finally, using the Laplace transformation, we can sum up the
series in the curly brackets. The sums equal unity. This con-
cludes the proof of Jarzynski’s relation within our two-level
setting.
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The assertion that the curly bracketed expression in Eq.
�23� is equal to one holds true not only for the Poisson re-
newal process. It is valid for any renewal �17�. Similarly, the
n expansion of the operator G�u , t�, which has been used in
the proof, is valid for an arbitrary renewal. We thus have an
interesting example of a non-Markovian time-
inhomogeneous process for which Jarzynski’s relation still
keeps its validity.

IV. EXPLICIT FORM OF THE PROBABILITY DENSITY
FOR THE WORK

Any application of the above scheme requires two speci-
fications. First, we must prescribe the dynamical laws Ei�t�,
i=1,2, which define, through Eq. �12�, the work done along
a given sample path. Second, we need the explicit forms of
the functions a�t� ,b�t� in the rate equation �10�. For the first
requirement the simplest nontrivial choice would be a linear
time dependence of the energy levels. Therefore, in this sec-
tion, we take E1�t�=��t, and E2�t�=0. The energies are
equal at the beginning and we assume that the system is
initially in equilibrium, i.e., p1�0�= p2�0�= 1

2 . Afterwards, due
to the external drive, the energy difference increases linearly,
reaching the value � in the time 1/�. We shall call the ve-
locity of the energy change �� as the driving rate. For the
second requirement we assume the validity of the detailed-
balance condition and hence only one of the functions
a�t� ,b�t� will be independent. We choose a�t�=1, i.e., b�t�
=exp�−���t�. Differently speaking, the rate for the transi-
tions �1→2� is constant and equals the attempt frequency �,
whereas the rate for the opposite transitions �2→1� de-
creases as � exp�−���t�. In the long time limit, the first state
will be depleted and all sample paths will end up in the
second state. The work can be done only before the station-
ary regime is established.

Our specifications suggest a natural choice for the dimen-
sionless time variable �=���t, and for the dimensionless
work �=�w. Hence � is simply the work counted in the
units kBT. Performing the direct Laplace transformation in �,
the conjugate variable will be denoted as s, i.e., s=u /�.
Similarly, � will be conjugate to z. Using the new variables,
Eq. �18� assumes the form

d

d�
G̃�s,�� = − 
s + 	 − 	e−�

− 	 	e−� �G̃�s,�� . �24�

The equation includes a single control parameter, 	
=� / �����. Therefore 1/	 is the driving rate �� reduced to
the value of the attempt frequency multiplied by kBT.

We now restrict ourselves to the main steps in the solution
of the system �24�, emphasizing the points which might be
useful in dealing with more complicated settings. First we
denote the unknown matrix elements as g̃ij�s ,��, i , j=1,2,
and we note that we have in fact two independent pairs of
two coupled equations. The second pair represents two
coupled differential equations for the functions g̃22�s ,�� and
g̃12�s ,��, similarly for the first pair. Now instead of trying to
solve the coupled systems, we first perform the direct
Laplace transformation in the time variable �. Hence, e.g.,

the product e−�g̃22�s ,�� will be transformed as g̃22�s ,z+1�.
Notice that we are using the same letter for a function and for
its Laplace transformation. Of course, the two functions are
completely different and we distinguish them by quoting al-
ways the variables.

We thus obtain two coupled pairs of difference equations
for the functions g̃ij�s ,z�, i , j=1,2 and consider only the sec-
ond pair. Eliminating the function g̃22�s ,z�, the resulting dif-
ference equation for the function g̃12�s ,z� reads

g̃12�s,z� + 	
1

z + 1

s + z + 1

s + z + 	
g̃12�s,z + 1� = 	

1

z + 1

1

s + z + 	
.

�25�

We now make the substitution z→ �z+1� and obtain a similar
equation which couples g̃12�s ,z+1� with g̃12�s ,z+2�. Con-
tinuing in this way, we finally obtain an infinite system of
linear algebraic equations for the unknown functions
g̃12�s ,z+n�, n=0,1 ,2 , . . . . The matrix which describes the
system has nonzero matrix elements only on the main diag-
onal and just above the main diagonal. The system can be
solved using standard algebraic methods. The first unknown
function reads

1

	
g̃12�s,z� = �

n=0

�

�− 	�nen�z + 1�rn�s + z + 	;1 − 	� . �26�

Here en�z�=1/ �z�n+1, rn�s ;
�= �s+
�n / �s�n+1, and
�z�n=z�z+1��z+2�¯ �z+n−1� is Pochhammer’s symbol
�23�. Notice that the functions en�z+1� contain only the
Laplace variable z and the functions rn�s+z+	 ;1−	� de-
pend only on the combination �s+z+	�. Therefore the in-
verse Laplace transformation of the functions rn�s+z+	 ;
1−	� with respect to the variable s will be exp�−��z
+	��rn�� ;1−	�. Afterwards, there remains the inverse
Laplace transform of the expression exp�−z��en�z+1� with
respect to the complex variable z. The factor exp�−z�� in-
duces the shift �→ ��−�� in the � original, i.e., we get
exp�−��−���en��−��. Summarizing these considerations the
double inverse transformation of the expression on the right-
hand side of Eq. �26� yields

1

	
g̃12��,�� = e−	�e−��−���

n=0

�

�− 	�nen�� − ��rn��;1 − 	� .

�27�

In order to make this expression explicit, we must invert the
functions en�z� and rn�s ;
�. We decompose them into partial
fractions and obtain

en��� = ����
1

n!
�1 − e−��n, �28�

rn��;
� = �����
k=0

n
�− e−��k

k!

�
 − k�n

�n − k�!
.

Here ��x� is the unit-step function; its derivative produces
the Dirac functions in the final expressions �30� and �31�.
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Hence we have succeeded in carrying out the two inverse
Laplace transformations. The result is a double power series
in the variables e−� and �1−e−��. The very last step consists
in transforming the series into a more transparent form. Here
we have used Vandermonde’s convolution theorem �23� and
the summation theorem for Kummer’s confluent hypergeo-
metric function �24�. It turns out that the double sum can be
transformed into the product of two infinite power series in
more complicated variables. More specifically, we have de-
rived the identity

�
n=0

�
�− 	�1 − e−��−����n

n! �
k=0

n
�− e−��k

k!

�1 − 	 − k�n

�n − k�!

= e−	�1−e−��−���
1F1„	;1;	�1 − e−���1 − e−��−���… . �29�

Here 1F1�	 ;� ;x� is Kummer’s confluent hypergeometric
function �24�. Notice that its argument in Eq. �29� vanishes
both for �=0 and for �=� and hence, at these points, Kum-
mer’s function equals unity.

We have given a series of arguments which yield finally
the expression �32� below. The other matrix elements can be

treated in a similar manner. We skip here a considerable
amount of purely computational steps and we write down the
final result

g̃11��,�� = �� − ��e−	� + 	2������� − ��e−	�

�exp�− 	�1 − e−��−�����1 − e−��e−��−��

�1F1„	 + 1;2;h��,��… , �30�

g̃22��,�� = ���exp�− 	�1 − e−��� + 	2������� − ��e−	�

�exp�− 	�1 − e−��−�����1 − e−��−���

�1F1„	 + 1;2;h��,��… , �31�

g̃12��,�� = 	������� − ��e−	�

�exp�− 	�1 − e−��−����e−��−��
1F1„	;1;h��,��… ,

�32�

FIG. 1. �Color online� The reduced probability density for the work �̃�� ,�� as a function of the reduced work variable � and the reduced
time variable �. All three quantities are dimensionless and the relations with their physical counterparts are given in the main text. The
reduced driving rate has been set to 1/	=��� /�=1/2. We have plotted one half of the sum of the functions �30�–�33�. For any fixed time
�, the density vanishes outside the interval �0,��. The curves in the planes �=0 and �=�, perpendicular to the base plane, depict the weights
of the singular parts on the borders of the support. In the base plane, the full line represents the reduced mean work w̃mean���, and the broken
curve is the reduced reversible work w̃rev���.
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g̃21��,�� = 	������� − ��e−	� exp�− 	�1 − e−��−����

�1F1„	 + 1;1;h��,��… , �33�

with h�� ,��=	�1−e−���1−e−��−���. These formulae repre-
sent the main result of the paper. The final probability den-
sity �̃�� ,�� is simply one half of the sum of the above four
functions. If needed, the transformation into the original
variables is simply ��w , t�=��̃��w ,���t�. We have
checked, both numerically, and analytically, that the density
is properly normalized. If 	 is a positive integer then the
Kummer’s function can be represented as the product of an
exponential function and a polynomial. For example, if 	
=1 we get

�̃��,�� =
1

2
�� − ��e−� +

1

2
���exp�− �1 − e−���

+
1

2
������� − ��e−��3 − e−��

�exp�− �e−� − e−��� . �34�

Figure 1 presents the three-dimensional plot of the probabil-
ity density in the case of an intermediate driving rate 	=2.
Notice the two lines in the base plane. The full curve in the
basic plane depicts the mean �reduced� work

w̃mean��� = �
0

�

d� ��̃��,�� =
1

2�
i=1

2

�
j=1

2 �
0

�

d� �g̃ij��,�� ,

�35�

the true mean work being wmean�t�= �W�t��= w̃mean����t� /�.
Carrying out the above integration, the singular part of the
function g̃22�� ,�� does not contribute whereas the singular
part of the function g̃11�� ,�� yields the contribution
� exp�−	�� /2. Otherwise, it does not seem possible to evalu-
ate the required integrals analytically and we had to use the
numerical integration. The dashed line in the base plane rep-
resents the reduced reversible work w̃rev���=log�2/ �1+e−���.
The true reversible work is again wrev�t�= w̃rev����t� /�. In
the rest of the paper, we always use the reduced units.

We have now the maximum possible information con-
cerning the work fluctuations during an “experiment” which
consists in driving the energy levels. We turn to extracting
specific physical conclusions from the formulas �30�–�33�.

V. DISCUSSION

The difference of the free energies represents the lower
boundary for the work done on the system during any irre-
versible isothermal process. The boundary is reached if and
only if the process is reversible. How is this basic law incor-
porated within our setting?

Figure 2 presents the probability density �̃�� ,�� for sev-
eral typical cases. We already know that the density includes
two delta functions on the borders of its support �0,��, cf. the
discussion of Eq. �20� in Sec. III. The weight of the delta
function situated at �=� equals exp�−	�� /2, i.e., it vanishes
in the long time limit. The weight measures the total prob-

ability of those sample paths which have never quit the first
state. Similarly, the weight of the delta function at �=0 is
exp�−	�1−e−��� /2 and it measures the total probability of all
those paths which, up to the time �, have made no jump out
of the second state. The weight approaches a nonzero limit
e−	 /2 which is the weight of the sample paths which have
never �i.e., within no time interval of a finite duration� left
the second state. This is of course a consequence of the van-
ishing transfer rate out of the second state. But even if the
second state no more emits any sample paths, its population
increases and finally reaches unity. Notice that we have here
two time scales. The time scale for locking the second state
is controlled by the driving velocity whereas the scale for
emitting sample paths from the first state is 1 /�.

The degree of irreversibility of the emerging process is
measured by the parameter 	. If 1 /	 is small, the attempt
times are very frequent. The system has a frequent possibility
to adapt the population of the states to the momentary values
of their energies. The external agent does the smallest pos-
sible work; the process is close to the equilibrium one. If, on
the other hand, 	�1, the attempt times are very rare. The

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

η

ρ̃
(η

,τ
)

a)

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

η

ρ̃
(η

,τ
)

b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

η

ρ̃
(η

,τ
)

c)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

η

ρ̃
(η

,τ
)

d)

FIG. 2. �Color online� The reduced probability density for the
work �̃�� ,�� as the function of the reduced work variable � for
several values of the parameter 	 and the reduced time �. In panel
�a�, we have taken 	=1, �=1; in panel �b� 	=1, �=3; in panel �c�
	=10, �=1, and in panel �d� 	=50, �=1. Using the thin lines, we
illustrate the matrix elements g̃ij�� ,��, i , j=1,2, as given in Eqs.
�30�–�33�. Specifically, g̃11�� ,�� is illustrated by the thin full line,
g̃21�� ,�� by the thin dash-dotted line, g̃12�� ,�� by the thin dotted
line, and g̃22�� ,�� by the thin dashed line. Notice the singular part
of the matrix element g̃11�� ,�� �the arrow situated at �=��, and the
singular part of the matrix element g̃22�� ,�� �the arrow situated at
�=0�. The heights of these two arrows show the weights of the
corresponding delta functions. The reduced probability density
�̃�� ,�� equals one half of the sum of the functions g̃ij�� ,��, i , j
=1,2. It is shown by the thick full line �its singular components at
�=0 and �=� are not shown in the figure�. Finally, the position of
the dashed black arrow indicates the reduced reversible work
w̃rev���. Similarly, the position of the full black arrow marks the
reduced mean work w̃mean���. The heights of these two black arrows
have no meaning.
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sample paths are constrained to remain during long time in-
tervals in their present states. Therefore although the energy
of the first state increases, the sample paths do not keep up to
leave it. The momentary population of the first state is bigger
then the equilibrium population corresponding to the mo-
mentary energy of this state. The work done is bigger than
the work during the equilibrium process.

Precisely speaking, the last statement concerns the mean
work w̃mean��� as defined in Eq. �35�. For any fixed time �,
the mean work w̃mean��� is smaller than the value �

2 �which
gives the mean work for the trivial case 	=0� and bigger
than the reversible work w̃rev���=log�2/ �1+e−���. In the
infinite-time limit the work density approaches the form

lim
�→�

�̃��,�� =
1

2
���e−	 +

1

2
����	e−	�1+��

� �1F1„	;1;	�1 − e−��…

+ 1F1„	 + 1;1;	�1 − e−��…

+ �	 − 1�1F1„	 + 1;1;	�1 − e−��…� . �36�

Consequently, the mean work approaches a definite value
lim�→� w̃mean���. The time scale for constitution of the
asymptotic limit is 1 /	 �i.e., 1 /� in physical nonreduced
units� and it is therefore under the external control.

If we increase the parameter 	, then not only the mean
work w̃mean��� at any fixed time � approaches the reversible
work w̃rev��� at that time, but also the density �̃�� ,�� ap-
proaches the delta function localized at w̃rev���. The relation-
ship

lim
	→�

�̃��,�� = 
� − log
2

1 + e−�� �37�

can be proved by performing the required limit in the expres-
sion for the Laplace transformation �̃�s ,z�, e.g., in Eq. �26�,
and then inverting the result into �̃�� ,��.

An important consequence of the work fluctuations is that
the work along a certain fraction of the sample paths is
smaller than the reversible work. Precisely speaking, for a
fixed time, the fraction v��� amounts to the area below the
density curve and above the interval �0, w̃rev���� plus the
weight of the delta function at �=0. The value of the revers-
ible work is delineated by the broken-line arrow in Fig. 2.
Specifically, if we take 	=1, we integrate the function �34�
and obtain

v��� = �
0

w̃rev���

d��̃��,�� =
1

4
�3 − e−��exp�−

1

2
�1 − e−��� ,

�38�

In the long-time limit, the function approaches the value
3/ �4�e�.

We have not exhausted the possible applications of the
general method as outlined in the second section. An essen-
tial point in our construction has been the assumed renewal
character for the interattempt times. Had we taken another
probability density for the interattempt times than the expo-
nential one, the underlying process D�t� would be a non-
Markovian one and the central evolution equation for the
work characteristic function, cf. Eq. �18�, would be an inte-
grodifferential equation.

Considering a rather complicated structure of our final
analytic expressions �30�–�33�, we compared them with the
results based on the computer simulation. Due to our specific
treatment of the time-inhomogeneous Markov process D�t�,
our numerical procedure is slightly different from that in Ref.
�14�. We simply literally follow our construction, i.e., we
first generate realizations of the Poisson point process �17�,
then evaluate the transition probabilities at the random times
generated, and finally decide about the transitions between
the two states. From its very formulation, our method oper-
ates with the continuous time, i.e., we do not need to control
the transition from the discrete time to the continuous time
�14�. In all our numerical tests, the results based on the
evaluation of the expressions �30�–�33� have been confirmed.

In conclusion, we have pointed out several properties of
the work fluctuation in the simple model of a nonequilibrium
isothermal process. It is our belief that the present analysis
can be helpful in problems which deal with more compli-
cated driving scenarios and/or with more complicated forms
of the transfer rates.
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